Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 11 de 11
Фильтр
1.
Front Med (Lausanne) ; 9: 1121297, 2022.
Статья в английский | MEDLINE | ID: covidwho-2275442
2.
Crit Care ; 26(1): 274, 2022 09 13.
Статья в английский | MEDLINE | ID: covidwho-2038848

Реферат

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.


Тема - темы
Acute Lung Injury , Delirium , Ventilator-Induced Lung Injury , Acute Lung Injury/complications , Acute Lung Injury/drug therapy , Animals , Delirium/complications , Disease Models, Animal , Interleukin-6 , Mice , Phenotype , Ventilator-Induced Lung Injury/pathology
3.
Biosensors (Basel) ; 12(6)2022 Jun 05.
Статья в английский | MEDLINE | ID: covidwho-1884002

Реферат

Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.


Тема - темы
COVID-19 , Pulmonary Atelectasis/etiology , Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , COVID-19/complications , COVID-19/physiopathology , Electric Impedance , Humans , Lung/physiopathology , Pneumonia, Aspiration/complications , Pneumonia, Aspiration/physiopathology , Pulmonary Atelectasis/physiopathology , Smoke Inhalation Injury/etiology , Smoke Inhalation Injury/physiopathology , Ventilator-Induced Lung Injury/complications , Ventilator-Induced Lung Injury/prevention & control
4.
J Clin Med ; 10(21)2021 Oct 26.
Статья в английский | MEDLINE | ID: covidwho-1488625

Реферат

The SARS-CoV-2 (COVID-19) pandemic has forced some reflections to be had surrounding the ventilatory support to be applied to certain types of patients. The model of two phenotypes, set out by Professor Gattinoni and colleagues, suggests that adequate monitoring of respiratory effort may play a key role in the treatment of respiratory failure due to COVID-19. An insufficient control of the patient's respiratory efforts could lead to an aggravation of lung damage, mainly due to the possibility of generating Patient Self-Inflicted Lung Injury (PSILI) with a consequent aggravation of the pathological picture. Nevertheless, effectively monitoring the patient's respiratory work, especially in nonintensive settings, is not easy. This article briefly describes some methods that allow the assessment of respiratory effort, such as the use of ultrasound and respiratory tests, which can be performed in nonintensive settings.

5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Статья в английский | MEDLINE | ID: covidwho-1346496

Реферат

qRT-PCR still remains the most widely used method for quantifying gene expression levels, although newer technologies such as next generation sequencing are becoming increasingly popular. A critical, yet often underappreciated, problem when analysing qRT-PCR data is the selection of suitable reference genes. This problem is compounded in situations where up to 25% of all genes may change (e.g., due to leukocyte invasion), as is typically the case in ARDS. Here, we examined 11 widely used reference genes for their suitability in commonly used models of acute lung injury (ALI): ventilator-induced lung injury (VILI), in vivo and ex vivo, lipopolysaccharide plus mechanical ventilation (MV), and hydrochloric acid plus MV. The stability of reference gene expression was determined using the NormFinder, BestKeeper, and geNorm algorithms. We then proceeded with the geNorm results because this is the only algorithm that provides the number of reference genes required to achieve normalisation. We chose interleukin-6 (Il-6) and C-X-C motif ligand 1 (Cxcl-1) as the genes of interest to analyse and demonstrate the impact of inappropriate normalisation. Reference gene stability differed between the ALI models and even within the subgroup of VILI models, no common reference gene index (RGI) could be determined. NormFinder, BestKeeper, and geNorm produced slightly different, but comparable results. Inappropriate normalisation of Il-6 and Cxcl1 gene expression resulted in significant misinterpretation in all four ALI settings. In conclusion, choosing an inappropriate normalisation strategy can introduce different kinds of bias such as gain or loss as well as under- or overestimation of effects, affecting the interpretation of gene expression data.


Тема - темы
Acute Lung Injury/genetics , Algorithms , Disease Models, Animal , Gene Expression Profiling/standards , Gene Expression Regulation , Genetic Markers , Acute Lung Injury/pathology , Animals , Female , Mice , Reference Standards
6.
Ann Intensive Care ; 11(1): 107, 2021 Jul 12.
Статья в английский | MEDLINE | ID: covidwho-1322949

Реферат

Veno-venous extracorporeal membrane oxygenation (ECMO) is a helpful intervention in patients with severe refractory hypoxemia either because mechanical ventilation cannot ensure adequate oxygenation or because lung protective ventilation is not feasible. Since ECMO is a highly invasive procedure with several, potentially devastating complications and its implementation is complex and expensive, simpler and less invasive therapeutic options should be first exploited. Low tidal volume and driving pressure ventilation, prone position, neuromuscular blocking agents and individualized ventilation based on transpulmonary pressure measurements have been demonstrated to successfully treat the vast majority of mechanically ventilated patients with severe hypoxemia. Veno-venous ECMO has a place in the small portion of severely hypoxemic patients in whom these strategies fail. A combined analysis of recent ARDS trials revealed that ECMO was used in only 2.15% of patients (n = 145/6736). Nevertheless, ECMO use has sharply increased in the last decade, raising questions regarding its thoughtful use. Such a policy could be harmful both for patients as well as for the ECMO technique itself. This narrative review attempts to describe together the practical approaches that can be offered to the sickest patients before going to ECMO, as well as the rationale and the limitations of ECMO. The benefit and the drawbacks associated with ECMO use along with a direct comparison with less invasive therapeutic strategies will be analyzed.

8.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Статья в английский | MEDLINE | ID: covidwho-1237350

Реферат

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Тема - темы
Antibodies/pharmacology , Apoptosis/drug effects , Delirium/metabolism , Interleukin-6/antagonists & inhibitors , Neurons/metabolism , Ventilator-Induced Lung Injury/metabolism , Animals , Delirium/drug therapy , Delirium/pathology , Disease Models, Animal , Female , Frontal Lobe/injuries , Frontal Lobe/metabolism , Frontal Lobe/pathology , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Mice , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/pathology
9.
J Appl Physiol (1985) ; 130(4): 1143-1151, 2021 04 01.
Статья в английский | MEDLINE | ID: covidwho-1189943

Реферат

Many patients who suffer from pulmonary diseases cannot inflate their lungs normally, as they need mechanical ventilation (MV) to assist them. The stress associated with MV can damage the delicate epithelium in small airways and alveoli, which can cause complications resulting in ventilation-induced lung injuries (VILIs) in many cases, especially in patients with acute respiratory distress syndrome (ARDS). Therefore, efforts were directed to develop safe modes for MV. In our work, we propose a different approach to decrease injuries of epithelial cells (EpCs) upon MV. We alter EpCs' cytoskeletal structure to increase their survival rate during airway reopening conditions associated with MV. We tested two anti-inflammatory drugs dexamethasone (DEX) and transdehydroandrosterone (DHEA) to alter the cytoskeleton. Cultured rat L2 alveolar EpCs were exposed to airway reopening conditions using a parallel-plate perfusion chamber. Cells were exposed to a single bubble propagation to simulate stresses associated with mechanical ventilation in both control and study groups. Cellular injury and cytoskeleton reorganization were assessed via fluorescence microscopy, whereas cell topography was studied via atomic force microscopy (AFM). Our results indicate that culturing cells in media, DEX solution, or DHEA solution did not lead to cell death (static cultures). Bubble flows caused significant cell injury. Preexposure to DEX or DHEA decreased cell death significantly. The AFM verified alteration of cell mechanics due to actin fiber depolymerization. These results suggest potential beneficial effects of DEX and DHEA for ARDS treatment for patients with COVID-19. They are also critical for VILIs and applicable to future clinical studies.NEW & NOTEWORTHY Preexposure of cultured cells to either dexamethasone or transdehydroandrosterone significantly decreases cellular injuries associated with mechanical ventilation due to their ability to alter the cell mechanics. This is an alternative protective method against VILIs instead of common methods that rely on modification of mechanical ventilator modes.


Тема - темы
Androsterone/therapeutic use , Dexamethasone/therapeutic use , Lung Injury/drug therapy , Respiration, Artificial/adverse effects , Animals , COVID-19/complications , COVID-19/therapy , Cell Death/drug effects , Cells, Cultured , Cytoskeleton/drug effects , Epithelial Cells/drug effects , Lung Injury/etiology , Rats , COVID-19 Drug Treatment
10.
Med Intensiva (Engl Ed) ; 45(5): 261-270, 2021.
Статья в английский | MEDLINE | ID: covidwho-1104158

Реферат

Background: COVID-19 acute respiratory distress syndrome (ARDS) shares the common histological hallmarks with other forms of ARDS. However, the chronology of the histological lesions has not been well established. Objective: To describe the chronological histopathological alterations in the lungs of patients with COVID-19 related ARDS. Design: A prospective cohort study was carried out. Setting: Intensive Care Unit of a tertiary hospital. Patients: The first 22 consecutive COVID-19 deaths. Measurements: Lung biopsies and histopathological analyses were performed in deceased patients with COVID-19 related ARDS. Clinical data and patient course were evaluated. Results: The median patient age was 66 [63-74] years; 73% were males. The median duration of mechanical ventilation was 17 [8-24] days. COVID-19 induced pulmonary injury was characterized by an exudative phase in the first week of the disease, followed by a proliferative/organizing phase in the second and third weeks, and finally an end-stage fibrosis phase after the third week. Viral RNA and proteins were detected in pneumocytes and macrophages in a very early stage of the disease, and were no longer detected after the second week. Limitation: Limited sample size. Conclusions: The chronological evolution of COVID-19 lung histopathological lesions seems to be similar to that seen in other forms of ARDS. In particular, lung lesions consistent with potentially corticosteroid-sensitive lesions are seen.


Antecedentes: El síndrome de dificultad respiratoria aguda (SDRA) asociado a la COVID-19 comparte características histológicas con otros tipos de SDRA. Sin embargo, no se ha establecido adecuadamente la cronología de las lesiones histológicas. Objetivo: Describir las alteraciones histopatológicas cronológicas en los pulmones de los pacientes con síndrome de dificultad respiratoria aguda asociado a COVID-19. Diseño: Estudio prospectivo de cohortes. Ámbito: Unidad de cuidados intensivos de un hospital terciario. Pacientes: Las primeras 22 muertes consecutivas por COVID-19. Intervenciones: Se llevaron a cabo biopsias pulmonares y análisis histopatológicos en pacientes fallecidos por SDRA asociado a COVID-19. Se evaluaron los datos clínicos y la evolución médica. Resultados: La mediana de edad de los pacientes fue de 66 (63-74) años y el 73% eran varones. La mediana de la duración de la ventilación mecánica fue de 17 (8-24) días. La lesión pulmonar inducida por COVID-19 se caracterizó por una fase exudativa durante la primera semana de la enfermedad, seguida de una fase proliferativa/organizativa en la segunda y tercera semana y, por último, una fase de fibrosis en fase terminal tras la tercera semana de evolución. Se detectaron proteínas y ARN vírico en neumocitos y macrófagos en una fase muy temprana de la enfermedad, pero estos ya no se volvieron a detectar a partir de la segunda semana. Limitación: Tamaño limitado de la muestra. Conclusión: La evolución cronológica de las lesiones histopatológicas pulmonares asociadas a la COVID-19 parece ser similar a la de otras formas de SDRA. En particular, se observan daños pulmonares coherentes con las lesiones potencialmente sensibles a los corticosteroides.

11.
Intensive Care Med Exp ; 9(1): 6, 2021 Feb 09.
Статья в английский | MEDLINE | ID: covidwho-1073047

Реферат

The COVID-19 pandemic has increased the need for a bedside tool for lung mechanics assessment and ventilator-induced lung injury (VILI) monitoring. Mechanical power is a unifying concept including all the components which can possibly cause VILI (volume, pressures, flow, respiratory rate), but the complexity of its mathematical computation makes it not so feasible in routine practice and limits its clinical use. In this letter, we describe the development of a mobile application that allows to simply measure power associated with mechanical ventilation, identifying each component (respiratory rate, resistance, driving pressure, PEEP volume) as well. The major advantage, according to the authors who developed this mathematical description of mechanical power, is that it enables the quantification of the relative contribution of its different components (tidal volume, driving pressure, respiratory rate, resistance). Considering the potential role of medical apps to improve work efficiency, we developed an open source Progressive Web Application (PWA), named "PowerApp" (freely available at https://mechpower.goodbarber.app ), in order to easily obtain a bedside measurement of mechanical power and its components. It also allows to predict how the modification of ventilatory settings or physiological conditions would affect power and each relative component. The "PowerApp" allows to measure mechanical power at a glance during mechanical ventilation, without complex mathematical computation, and making mechanical power equation useful and feasible for everyday clinical practice.

Критерии поиска